star.gif (136 bytes) DICA 1: Multiplicar um número por 10:
Basta deslocar a vírgula uma casa decimal para a direita.
Exemplo 1: 16 x 10 = 160
Exemplo 2: 15,567 x 10 = 155,67





star.gif (136 bytes) DICA 2: Multiplicar um número por 10n:
Basta deslocar a vírgula n casas decimais para a direita.
Exemplo 1: 16 x 103 = 16000Exemplo 2: 15,567 x 104 = 155670
Então, se quisermos efetuar a seguinte multiplicação: 12 x 100. Sabemos que 100=102, então:
12 x 100 = 12 x 102 = 1200.





star.gif (136 bytes) DICA 3: Dividir um número por 10:
Basta deslocar a vírgula uma casa decimal para a esquerda.Exemplo 1: 16 / 10 = 1,6
Exemplo 2: 15,567 / 10 = 1,5567





star.gif (136 bytes) DICA 4: Dividir um número por 10n:
Basta deslocar a vírgula n casas decimais para a esquerda.Exemplo 1: 16 / 103 = 0,016Exemplo 2: 15,567 / 102 = 0,15567
Então, se quisermos efetuar a seguinte divisão: 12 / 1000. Sabemos que 1000=103, então:
12 / 1000 = 12 / 103 = 0,012.



star.gif (136 bytes) DICA 5: Multiplicar um número por 11:
Quando o número for de 2 algarismos, basta somar esses 2 algarismos e colocar o resultado no meio deles. Por exemplo, vamos efetuar a seguinte multiplicação: 26 x 11.
Temos o número 26, somando seus 2 algarismos temos 2+6=8. Pronto! Agora é só colocar esse 8 no meio deles:
a resposta é 286. Portanto 26 x 11 = 286.
Outros exemplos:
1) 34 x 11
somamos os algarismos do número 34: 3+4=7
colocamos o resultado no meio deles: 374. Portanto 34x11 = 374.
2) 81 x 11
somamos os algarismos do número 81: 8+1=9
colocamos o resultado no meio deles: 891. Portanto 81x11 = 891.
3) 37 x 11
somamos os algarismos do número 37: 3+7=10
Como deu um nº maior que 9, então não podemos colocar todo o número no meio deles. Colocamos apenas o algarismo das unidades (0) no meio deles, e o algarismo da dezena (1) é somado ao primeiro algarismo do número: 407. Portanto 37x11 = 407.
Quando o número for de 3 algarismos, então esse número multiplicado por 11 resultará em um número de 4 algarismos. Por exemplo, vamos efetuar a seguinte multiplicação: 135 x 11.
Temos o número 135. Somando o 1º com o 2º algarismo desse número temos 1+3=4. Somando o 2º com o 3º algarismo desse número temos 3+5=8. Esses 2 resultados serão colocados no meio do número 135, tirando o seu algarismo do meio:
1485. Portanto 135 x 11 = 1485.




star.gif (136 bytes) DICA 6: Multiplicar um número por 9:
Nesse caso basta acrescentar um zero no final do número e subtrair pelo número inicial. Vamos efetuar a seguinte multiplicação: 44 x 9.
Acrescentando um zero no final do número 44 ficamos com 440.
Então subtraímos desse valor o valor inicial: 440-44 = 396.
Portanto 44 x 9 = 396.
Outros exemplos:
27 x 9 = 270-27 = 243.
56 x 9 = 560-56 = 504.
33 x 9 = 330-33 = 297.



star.gif (136 bytes) DICA 7: Multiplicar um número por 99:
Nesse caso basta acrescentar 2 zeros no final do número e subtrair pelo número inicial. Vamos efetuar a seguinte multiplicação: 44 x 99.
Acrescentando 2 zeros no final do número 44 ficamos com 4400.
Então subtraímos desse valor o valor inicial: 4400-44 = 4356.
Portanto 44 x 99 = 4356.
Outros exemplos:
27 x 99 = 2700-27 = 2673
56 x 99 = 5600-56 = 5544
33 x 99 = 3300-33 = 3267


star.gif (136 bytes) DICA 8: Multiplicar um número por 101:
Quando um número de 2 algarismos AB for multiplicado por 101, o resultado será ABAB
Alguns exemplos:
43 x 101 = 4343
32 x 101 = 3232
14 x 101 = 1414



star.gif (136 bytes) DICA 9: Multiplicar 2 números (de 2 algarismos) que possuam o mesmo algarismo das dezenas, e a soma de seus algarismos das unidades seja 10.
Exemplos de multiplicações que podem ser feitas com esse método: 42x48, 53x57, 21x29, 35x35, 87x83, 94x96, etc.
Devem ser seguidos os seguintes passos:
1) Multiplicamos o algarismo das dezenas (que é igual nos 2 números) pelo número seguinte a ele;
2) Multiplicamos os algarismos das unidades normalmente;
3) Juntamos as duas partes.
Vamos efetuar a seguinte multiplicação: 53 x 57:
Passo 1:
5x6 = 30
Passo 2:
3x7 = 21
Passo 3:
Juntamos os dois números: 3021.
Portanto 53 x 57 = 3021. Barbada!
Outro exemplo: 94 x 96:
Passo 1:
9x10 = 90
Passo 2:
4x6 = 24
Passo 3:
Juntamos os dois números: 9024.
Portanto 94 x 96 = 9024. Barbada!



star.gif (136 bytes) DICA 10: Soma dos n primeiros números naturais ímpares:
A soma dos n primeiros números naturais ímpares é igual a n2
Exemplos:
1) Soma dos 5 primeiros números naturais ímpares (1+3+5+7+9):
A soma é igual a 52 = 25.
2) Soma dos 15 primeiros números naturais ímpares:
A soma é igual a 152 = 225.



star.gif (136 bytes) DICA 11: Multiplicar um número por 15:
Some o número com a sua metade, e multiplique o resultado por 10.Exemplos:
14×15 =(14+7)×10=210
10,4×15=(10,4+5,2)×10=15,6×10=156.




star.gif (136 bytes) DICA 12: Tabuada do 9:
Se você tem dificuldades para decorar a tabuada do 9, pode fazer o seguinte:
1) Considere o número anterior ao qual você irá multiplicar o 9.
2) Veja quanto falta para ele chegar ao 9.
3) Junte os dois números encontrados.
Por exemplo:
1) 9 x 2 => o número anterior ao dois é o 1.
2) Para o 1 chegar ao 9, faltam 8.
3) Agora basta unir os dois números: 18
Portanto, 9 x 2 = 18.
Da mesma forma pode ser feito para os outros números, até chegar em 9x9:
1) 9 x 9 => o número anterior ao nove é o 8.
2) Para o 8 chegar ao 9, falta 1
3) Agora basta unir os dois números: 81
Portanto, 9 x 9 = 81.



star.gif (136 bytes) DICA 13: Dividir qualquer número por 5:
Basta multiplicar o número por 2 e "arrastar" a vírgula para a esquerda.
Ex: 345 / 5 = 345 * 2 = 690. Arrastando a vírgula, temos 69,0.
Ex: 1526 / 5 = 1526 * 2 = 3052. Arrastando a vírgula, temos 305,2.



star.gif (136 bytes) DICA 14: Como descobrir o próximo quadrado?
Some o quadrado anterior com duas vezes com o número do qual você quer descobrir o quadrado, e depois diminua uma unidade.
Ex: Se 32=9, quanto vale 42?
Aplicando a regra, temos:
9 + 4 + 4 = 17
17 - 1 = 16
Portanto, 42 = 16
Outro exemplo: 52 = ?
16 + 5 + 5 - 1 = 25



star.gif (136 bytes) DICA 15: Adição: Arredondamento da 2ª parcela para um múltiplo de 10 conveniente:
Arredonda-se a 2ª parcela para o 1ª múltiplo de 10 inferior a esse número. Posteriormente, acrescenta-se a diferença entre o número original e o número arredondado.
Exemplos:
23 + 36 = 23 + 30 + 6 = 53 + 6 = 59
357 + 459 = 357 + 450 + 9 = 807 + 9 = 816
Observação: Quando for conveniente, arredonda-se a 2ª parcela para o 1ª múltiplo de 10 superior a esse número. Posteriormente, subtrai-se a diferença entre o número arredondado e o número original.
Exemplo:
357 + 459 = 357 + 460 - 1 = 817 – 1 = 816



star.gif (136 bytes) DICA 16: Multiplicação por números terminados em 0:
Multiplicam-se as partes sem os zeros finais e acrescenta-se a quantidade de zeros finais.
Exemplos:
23 x 10 = (23 x 1)0 = 230
45 x 20 = (45 x 2)0 = 900
15 x 300 = (15 x 3)00 = 4500
30 x 90 = (3 x 9)00 = 2700
author
Prof° Walter Coelho
Resolvi ensinar matemática de um jeito diferente, compartilhando!!!